2019-12-20 — CarLcCHeck Syntax Hints

CarcCheck Structured Proofs

Simple Induction

By induction on
Base case:
?
Induction step:
?

. Induction hypothesis ...
?

‘var @ Ty :

Making base case, induction step, and induction hypothe-
sis explicit:

By induction on
Base case "?7':
?
Induction step "7 :
?
. Induction hypothesis *?°
?

‘var : Ty :

Remember that in nested inductions, induction hypotheses
always need to be made explicit!

Induction pattern for sequences (choose x wisely!):

Theorem: P
Proof:
By induction on “xs :
Base case 'P[xs = €]
?

Seq A':

Induction step "V x :
For any “x':
?

A ¢ P[Xxs = X <« xs] :

These can also be used for proving theorems of shape
Vvar : Ty e P

by induction on precisely that universally-quantified vari-

~.n

able, that is, “on “var : Ty :"
The induction hypothesis is then P.

Example for sequences:

Theorem: V xs :
Proof:
By induction on “xs : Seq A':
Base case "P[xs = ¢]°
?

Seq A * P

Induction step "V x
For any "x':
?

: A e P[Xs = x <« xs]:

Facts that can be shown by “Evaluation”

Only where enabled (and never can contain variables):
Fact ‘6 -7 =42", Fact '6 >7 = false’

Assuming the Antecedent

Assuming ‘p°, “q:
?

. Assumption “p°
?

Assuming “p° and using with
?
. Assumption “p°
?

Assuming a Witness

Assuming witness *x' satisfying *P":
Proof for Q using Assumption " P’

proves “(3 x o P)=- Q" provided -occurs('x’, 'P").

Assuming witness " x° satisfying ' P" by Hint:
Proof for Q using Assumption " P’

proves “Q” if the hint proves “(3 x o P)”,
provided —occurs(‘x’, ‘P").

Proving Universal Quantifications
Proving (V v:N e P):

Forany "v:N":
Proof for P

Proving (Vv v:N | R & P):

For any 'v:N" satisfying "R":
Proof for P using Assumption ‘R’

Case Analysis

By cases: ‘p*, ‘q’, 'r
Completeness:
?
Case "p':

?

. Assumption “p°
?

Subproofs

?
=(Subproof for °
{ proof indented as far as needed
to avoid parse error!)

~

Continuing a calculation with a structured proof for the
last calculation expression:

{ Calculation ending in P)
Proof for this:

{ Proof for "P")

is the same, but with different indentation!, as:

{ Calculation ending in “P")
=(Subproof for "P:
{ Proof for P)
)

true

Theorems Used as Proof Methods (Example)

Using “Mutual implication”:
Subproof for “... = h
?

Subp?oof for *... =
?

Side Proofs

Side proof for "P°

?
Continuing with goal "?°
?
local property P’
?

(Multiple side proofs at the same indentation are possible,
and can use any previously-established local property.)

Disabling Hints Producing Time-outs

Add “?, " at the beginning of the hint:

=(?, “Golden rule”)

Selected CaLcCHeckye, Key Bindings
(See Getting Started with CALCCHECKwe, for the com-
plete listing.)

The following key bindings work the same in both edit
and command modes:

Ctrl-Enter performs a syntax check on the contents of
all code cells before and up to the current cell.

Ctrl-Alt-Enter performs proof checks (if enabled) on
the contents of all code cells before and up to
the current cell. During Midterm 1: Same as
Ctrl-Enter.

Shift-Alt-RightArrow enlarges the width of the cur-
rent code cell entry area by a small amount
Ctrl-Shift-Alt-RightArrow enlarges the width of the

current code cell entry area by a large amount
Shift-Alt-LeftArrow reduces the width of the current
code cell entry area by a small amount
Ctrl-Shift-Alt-LeftArrow reduces the width of the
current code cell entry area by a large amount
Ctrl-Shift-v (for visible spaces) toggles display of ini-
tial spaces on each line as “}" characters.

Some important symbols:

ONLY if you are logged in via Avenue:

Ctrl-Shift-s saves the notebook on the server.
To be safest, use in command mode, e.g. after
clicking on the area of a code box where the line
number would be displayed.
Check the pop-up whether it is the CalcCheck-
Web pop-up saying “... Notebook saved to ...".
(Links for reloading the last three saved versions
are displayed when you view the notebook again.)

In edit mode, you have the following key bindings:

Esc enters command mode

Alt-i or A1t-SPACE inserts one space in the current
line and in all non-empty lines below it, until a line
is encountered that is not indented more than to
the cursor position.

A1t-BACKSPACE deletes only a space character to the
left of the current cursor position, and also from
lines below it, until a line is encountered that is
not indented at least to the cursor position.

A1t-DELETE deletes only a space character to the right
of the current cursor position, and also from lines
below it, until a line is encountered that is not
indented more than to the cursor position.

The last three bindings also work with Shift.

Symbol | Key sequence(s) Symbol | Key sequence(s) Symbol | Key sequence(s)
= \equiv, \== X \times € \eps, \emptyseq
. < \cons
£ \nequiv DN \rel . \snoc
- \1lnot (\1rel, \ ((- \catenate
A \land) \rrel, \)) «o> \Rel
% \lor 3 \rcomp, \fcomp, \};; - \tfun
\impli \=> 5 + \pfun
= implies, \= \converse, \u{} - \tinj
= \follows * \"+ o+ \pinj
+ \neq * * - \tsurj
v \forall /S \lres > tp:urj
. = | \tbij]
3 \exists N\ \rres . \pbij
> \sum < \drestr 1 \1lbag
I1 \product < \ndrestr) \rbag
| \with > \rrestr E \inbag
. \spot B \nrrestr [] t][:
! \min (\limg i= 1= (assignment commands)
T \max D \rimg = \:=, \becomes (substitutions)
B \BB, \bool ® \oplus
N \NN, \nat
7] Table of Precedences
\ZZ, \int e [x:=e] (textual substitution) (highest precedence)
5 \33 o (D 2t
c \in e unary prefix operators +, —, -, #, ~, P, suc_
P \PP, \powerset e __ (function application), Q
[] * %
~ ¥ . / + mod gcd
J \union e (relation composition) /" N\
N \intersection e + - U N x o & = 4 494 > b
U \bigunion e (relat.ion type)
N \bigintersection : J,_)) (function type)
L \bot o« #
T \top e 4 » -~
> \pseudocompl e = # < > € c c o 2| _()_ (conjunctional)
c \subseteq, \ (= * v
5 | R e S S
2 \supseteq, \)= o« = #
c \subset e := (assignment command)
5 \supset e : (command sequencing) (lowest precedence)
\universe All non-associative binary infix operators associate to the left, except **, 4, =,

—, which associate to the right.

http://calccheck.mcmaster.ca/CalcCheckDoc/GettingStartedWithCalcCheckWeb.html

	CALCCHECK Structured Proofs
	Selected CALCCHECKWeb Key Bindings

